Optimization of Facility Layout Design via Feedback Loop Between Physical and Psychophysical Criteria Using Virtual Reality

Senior Design II (Spring 2021)
Project Supporter: Simon Hsiang
Project Mentor: John Small
Project Lead: Ian Maevski (imaevski@uncc.edu)
Team: Sean Brown (sbrow259@uncc.edu), Abdalla Alhabash (aalhabas@uncc.edu), Nathan Mahn (nmahn@uncc.edu), Mahdi Al Abbas (malabbas@uncc.edu)

Project Objectives

- Develop initial layout design considering only known physical factors based on blueprints
- Develop VR models for facility layout design
- Collect data using eye-tracking software
- Analyze the data using analytics techniques such as AHP-based data normalization and P-value lowest performer comparison
- Optimize the layout based on identified psychophysical factors and trends
- Continue optimizing until an optimal response is reached and the model cannot be optimized further
- Present the best obtained model to the faculty

Project Process

- Iterative optimization process
- An iteration consists of three phases
 - Design
 - Testing
 - Data analysis
- Application setup and VR preparation includes
 - Importing packages into Unity
 - Human models implementation
 - Adding NPCs
 - Create a 6ft radius around objects
 - Adding user position tracking

Tools Used for Analysis

- iMotions software was used to track the user's eye movements within the model
 - Areas of Interest Analysis was used to track the users' time of first fixation for task locations
 - Gaze mapping and screen recordings were used to observe eye motions in the environment
- Scripts were written in Unity to obtain measurements of human behavior in the model
 - Code written to track how long a user stayed within a 6ft. radius of others in restaurant
 - Code written to track the total distance the user traveled in their simulation

Data Analysis

- Raw data
 - Creates normal distribution of participants
 - P-values
 - Identifies and compares worst performers
 - AHP Scoring
 - Gives overall score to each model based on normalized project measurements

Testing

- 24 total UNCC students participated in testing
- Users were properly trained before beginning
- Participants performed tasks that resembled a customer in a restaurant
- iMotions and automated scripts were used to collect psychophysical data from the participants in the restaurant model
- Completed 3 total iterations of the loop (Design, Testing, and Data Analysis)

Conclusions

- Virtual environment can enable virtually unlimited types of simulations; this can save a tremendous amount of capital especially for businesses
- Virtual environment can also help in testing a prototype before it is deployed in the field and thus avoid any costly mistakes that might have been overlooked
- The next several years will be crucial in adopting this technology; businesses that overlook it might not have a competitive edge in the future